Navigation

    Gpushare.com

    • Register
    • Login
    • Search
    • Popular
    • Categories
    • Recent
    • Tags

    tensorboard启动失败

    不懂就问❓在线等
    1
    1
    48
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • 1
      132****5973 last edited by

      运行到get_started.inpynb中以下代码块的时候报错

      model = create_model()
      model.compile(optimizer='adam',
                    loss='sparse_categorical_crossentropy',
                    metrics=['accuracy'])
      
      log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
      tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
      
      model.fit(x=x_train, 
                y=y_train, 
                epochs=5, 
                validation_data=(x_test, y_test), 
                callbacks=[tensorboard_callback])
      

      2023-04-02 14:27:45.323033: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:219] failed to create cublas handle: cublasGetStatusString symbol not found.
      2023-04-02 14:27:45.323121: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:222] Failure to initialize cublas may be due to OOM (cublas needs some free memory when you initialize it, and your deep-learning framework may have preallocated more than its fair share), or may be because this binary was not built with support for the GPU in your machine.
      2023-04-02 14:27:45.323155: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at matmul_op_impl.h:621 : INTERNAL: Attempting to perform BLAS operation using StreamExecutor without BLAS support
      2023-04-02 14:27:45.323195: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:GPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INTERNAL: Attempting to perform BLAS operation using StreamExecutor without BLAS support
      [[{{node sequential_2/dense_4/MatMul}}]]

      InternalError Traceback (most recent call last)
      Input In [18], in <cell line: 9>()
      6 log_dir = “logs/fit/” + datetime.datetime.now().strftime(“%Y%m%d-%H%M%S”)
      7 tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
      ----> 9 model.fit(x=x_train,
      10 y=y_train,
      11 epochs=5,
      12 validation_data=(x_test, y_test),
      13 callbacks=[tensorboard_callback])

      File /usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
      67 filtered_tb = _process_traceback_frames(e.traceback)
      68 # To get the full stack trace, call:
      69 # tf.debugging.disable_traceback_filtering()
      —> 70 raise e.with_traceback(filtered_tb) from None
      71 finally:
      72 del filtered_tb

      File /usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py:52, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
      50 try:
      51 ctx.ensure_initialized()
      —> 52 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
      53 inputs, attrs, num_outputs)
      54 except core._NotOkStatusException as e:
      55 if name is not None:

      InternalError: Graph execution error:

      Detected at node ‘sequential_2/dense_4/MatMul’ defined at (most recent call last):
      File “/usr/lib/python3.8/runpy.py”, line 194, in _run_module_as_main
      return _run_code(code, main_globals, None,
      File “/usr/lib/python3.8/runpy.py”, line 87, in _run_code
      exec(code, run_globals)
      File “/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py”, line 17, in <module>
      app.launch_new_instance()
      File “/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py”, line 976, in launch_instance
      app.start()
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py”, line 712, in start
      self.io_loop.start()
      File “/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py”, line 215, in start
      self.asyncio_loop.run_forever()
      File “/usr/lib/python3.8/asyncio/base_events.py”, line 570, in run_forever
      self._run_once()
      File “/usr/lib/python3.8/asyncio/base_events.py”, line 1859, in _run_once
      handle._run()
      File “/usr/lib/python3.8/asyncio/events.py”, line 81, in _run
      self._context.run(self._callback, *self._args)
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py”, line 510, in dispatch_queue
      await self.process_one()
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py”, line 499, in process_one
      await dispatch(*args)
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py”, line 406, in dispatch_shell
      await result
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py”, line 730, in execute_request
      reply_content = await reply_content
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py”, line 383, in do_execute
      res = shell.run_cell(
      File “/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py”, line 528, in run_cell
      return super().run_cell(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py”, line 2881, in run_cell
      result = self._run_cell(
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py”, line 2936, in _run_cell
      return runner(coro)
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py”, line 129, in pseudo_sync_runner
      coro.send(None)
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py”, line 3135, in run_cell_async
      has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py”, line 3338, in run_ast_nodes
      if await self.run_code(code, result, async
      =asy):
      File “/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py”, line 3398, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
      File “/tmp/ipykernel_9744/1360389098.py”, line 9, in <cell line: 9>
      model.fit(x=x_train,
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 65, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 1685, in fit
      tmp_logs = self.train_function(iterator)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 1284, in train_function
      return step_function(self, iterator)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 1268, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 1249, in run_step
      outputs = model.train_step(data)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 1050, in train_step
      y_pred = self(x, training=True)
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 65, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/training.py”, line 558, in call
      return super().call(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 65, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py”, line 1145, in call
      outputs = call_fn(inputs, *args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 96, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/sequential.py”, line 412, in call
      return super().call(inputs, training=training, mask=mask)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py”, line 512, in call
      return self._run_internal_graph(inputs, training=training, mask=mask)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py”, line 669, in _run_internal_graph
      outputs = node.layer(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 65, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py”, line 1145, in call
      outputs = call_fn(inputs, *args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py”, line 96, in error_handler
      return fn(*args, **kwargs)
      File “/usr/local/lib/python3.8/dist-packages/keras/layers/core/dense.py”, line 241, in call
      outputs = tf.matmul(a=inputs, b=self.kernel)
      Node: ‘sequential_2/dense_4/MatMul’
      Attempting to perform BLAS operation using StreamExecutor without BLAS support
      [[{{node sequential_2/dense_4/MatMul}}]] [Op:__inference_train_function_2338]

      1 Reply Last reply Reply Quote 0
      • First post
        Last post