Navigation

    Gpushare.com

    • Register
    • Login
    • Search
    • Popular
    • Categories
    • Recent
    • Tags

    CIFAR-10 数据集实战——构建ResNet18神经网络

    CV领域
    1
    1
    106
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • 155****7220
      155****7220 last edited by

      如果不了解ResNet的同学可以先看我的这篇博客ResNet论文阅读

      首先实现一个Residual Block

      import torch
      from torch import nn
      from torch.nn import functional as F
      
      class ResBlk(nn.Module):
          def __init__(self, ch_in, ch_out, stride=1):
              super(ResBlk, self).__init__()
              self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
              self.bn1 = nn.BatchNorm2d(ch_out)
              
              self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
              self.bn2 = nn.BatchNorm2d(ch_out)
              
              if ch_out == ch_in:
                  self.extra = nn.Sequential()
              else:
                  self.extra = nn.Sequential(
                      
                      # 1×1的卷积作用是修改输入x的channel
                      # [b, ch_in, h, w] => [b, ch_out, h, w]
                      nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                      nn.BatchNorm2d(ch_out),
                  )
              
          def forward(self, x):
              out = F.relu(self.bn1(self.conv1(x)))
              out = self.bn2(self.conv2(out))
      
              # short cut
              out = self.extra(x) + out
              out = F.relu(out)
              
              return out
      

      Block中进行了正则化处理,以使train过程更快更稳定。同时要考虑,如果两元素的ch_in和ch_out不匹配,进行加法时会报错,因此需要判断一下,如果不想等,就用1×1的卷积调整一下

      测试一下

      blk = ResBlk(64, 128, stride=2)
      tmp = torch.randn(2, 64, 32, 32)
      out = blk(tmp)
      print(out.shape)
      

      输出的shape大小是torch.Size([2, 128, 16, 16])

      这里解释一下,为什么有的层要专门设置stride。先不考虑别的层,对于一个Residual block,channel从64增大到128,如果所有的stride都是1,padding也是1,那么图片的w和h也不会变,但是channel增大了,此时就会导致整个网络的参数增多。而这才仅仅一个Block,更不用说后面的FC以及更多Block了,所以stride不能全部设置为1,不要让网络的参数一直增大

      然后我们搭建完整的ResNet-18

      class ResNet18(nn.Module):
          def __init__(self):
              super(ResNet18, self).__init__()
              
              self.conv1 = nn.Sequential(
                  nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
                  nn.BatchNorm2d(64),
              )
              # followed 4 blocks
              
              # [b, 64, h, w] => [b, 128, h, w]
              self.blk1 = ResBlk(64, 128, stride=2)
              # [b, 128, h, w] => [b, 256, h, w]
              self.blk2 = ResBlk(128, 256, stride=2)
              # [b, 256, h, w] => [b, 512, h, w]
              self.blk3 = ResBlk(256, 512, stride=2)
              # [b, 512, h, w] => [b, 512, h, w]
              self.blk4 = ResBlk(512, 512, stride=2)
              
              self.outlayer = nn.Linear(512*1*1, 10)
          
          def forward(self, x):
              x = F.relu(self.conv1(x))
              
              # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
              x = self.blk1(x)
              x = self.blk2(x)
              x = self.blk3(x)
              x = self.blk4(x)
              
              x = self.outlayer(x)
              
              return x
      

      测试一下

      x = torch.randn(2, 3, 32, 32)
      model = ResNet18()
      out = model(x)
      print("ResNet:", out.shape)
      

      结果报错了,错误信息如下

      size mismatch, m1: [2048 x 2], m2: [512 x 10] at /pytorch/aten/src/TH/generic/THTensorMath.cpp:961
      

      问题在于我们最后定义线性层的输入维度,和上一层Block的输出维度不匹配,在ResNet18的最后一个Block运行结束后打印一下当前x的shape,结果是torch.Size([2, 512, 2, 2])

      解决办法有很多,可以修改线性层的输入进行匹配,也可以在最后一层Block后面再进行一些操作,使其与512匹配

      先给出修改后的代码,在做解释

      class ResNet18(nn.Module):
          def __init__(self):
              super(ResNet18, self).__init__()
              
              self.conv1 = nn.Sequential(
                  nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
                  nn.BatchNorm2d(64),
              )
              # followed 4 blocks
              
              # [b, 64, h, w] => [b, 128, h, w]
              self.blk1 = ResBlk(64, 128, stride=2)
              # [b, 128, h, w] => [b, 256, h, w]
              self.blk2 = ResBlk(128, 256, stride=2)
              # [b, 256, h, w] => [b, 512, h, w]
              self.blk3 = ResBlk(256, 512, stride=2)
              # [b, 512, h, w] => [b, 512, h, w]
              self.blk4 = ResBlk(512, 512, stride=2)
              
              self.outlayer = nn.Linear(512*1*1, 10)
          
          def forward(self, x):
              x = F.relu(self.conv1(x))
              
              # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
              x = self.blk1(x)
              x = self.blk2(x)
              x = self.blk3(x)
              x = self.blk4(x)
              
              # print("after conv:", x.shape) # [b, 512, 2, 2]
              
              # [b, 512, h, w] => [b, 512, 1, 1]
              x = F.adaptive_avg_pool2d(x, [1, 1])
              
              x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
              x = self.outlayer(x)
              
              return x
      

      这里我采用的是第二种方法,在最后一个Block结束以后,接了一个自适应的pooling层,这个pooling的作用是将不论输入的宽高是多少,全部输出称宽高都是1的tensor,其他维度保持不变。然后再做一个reshape操作,将[batchsize, 512, 1, 1]reshape成[batchsize, 512*1*1]大小的tensor,这样就和接下来的线性层对上了,线性层的输入大小是512,输出是10。因此整个网络最终输出的shape就是[batchsize, 10]

      最后我们把之前训练LeNet5的代码拷贝过来,将里面的model=LeNet5()改为model=ResNet18()就行了。完整代码如下

      import torch
      from torch import nn, optim
      import torch.nn.functional as F
      from torch.utils.data import DataLoader
      from torchvision import datasets, transforms
      
      
      batch_size=32
      cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([
          transforms.Resize([32, 32]),
          transforms.ToTensor(),
      ]), download=True)
      
      cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)
      
      cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([
          transforms.Resize([32, 32]),
          transforms.ToTensor(),
      ]), download=True)
          
      cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)      
      
      class ResBlk(nn.Module):
          def __init__(self, ch_in, ch_out, stride=1):
              super(ResBlk, self).__init__()
              self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
              self.bn1 = nn.BatchNorm2d(ch_out)
              
              self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
              self.bn2 = nn.BatchNorm2d(ch_out)
              
              if ch_out == ch_in:
                  self.extra = nn.Sequential()
              else:
                  self.extra = nn.Sequential(
                      
                      # 1×1的卷积作用是修改输入x的channel
                      # [b, ch_in, h, w] => [b, ch_out, h, w]
                      nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                      nn.BatchNorm2d(ch_out),
                  )
              
          def forward(self, x):
              out = F.relu(self.bn1(self.conv1(x)))
              out = self.bn2(self.conv2(out))
      
              # short cut
              out = self.extra(x) + out
              out = F.relu(out)
              
              return out
              
      class ResNet18(nn.Module):
          def __init__(self):
              super(ResNet18, self).__init__()
              
              self.conv1 = nn.Sequential(
                  nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
                  nn.BatchNorm2d(64),
              )
              # followed 4 blocks
              
              # [b, 64, h, w] => [b, 128, h, w]
              self.blk1 = ResBlk(64, 128, stride=2)
              # [b, 128, h, w] => [b, 256, h, w]
              self.blk2 = ResBlk(128, 256, stride=2)
              # [b, 256, h, w] => [b, 512, h, w]
              self.blk3 = ResBlk(256, 512, stride=2)
              # [b, 512, h, w] => [b, 512, h, w]
              self.blk4 = ResBlk(512, 512, stride=2)
              
              self.outlayer = nn.Linear(512*1*1, 10)
          
          def forward(self, x):
              x = F.relu(self.conv1(x))
              
              # 经过四个blk以后 [b, 64, h, w] => [b, 512, h, w]
              x = self.blk1(x)
              x = self.blk2(x)
              x = self.blk3(x)
              x = self.blk4(x)
              
              # print("after conv:", x.shape) # [b, 512, 2, 2]
              
              # [b, 512, h, w] => [b, 512, 1, 1]
              x = F.adaptive_avg_pool2d(x, [1, 1])
              
              x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]
              x = self.outlayer(x)
              
              return x
      
      def main():
      
          ##########  train  ##########
          #device = torch.device('cuda')
          #model = ResNet18().to(device)
          criteon = nn.CrossEntropyLoss()
          model = ResNet18()
          optimizer = optim.Adam(model.parameters(), 1e-3)
          for epoch in range(1000):
              model.train()
              for batchidx, (x, label) in enumerate(cifar_train):
                  #x, label = x.to(device), label.to(device)
                  logits = model(x)
                  # logits: [b, 10]
                  # label:  [b]
                  loss = criteon(logits, label)
                  
                  # backward
                  optimizer.zero_grad()
                  loss.backward()
                  optimizer.step()
              
              print('train:', epoch, loss.item())
              
              ########## test  ##########
              model.eval()
              with torch.no_grad():
                  total_correct = 0
                  total_num = 0
                  for x, label in cifar_test:
                      # x, label = x.to(device), label.to(device)
      
                      # [b]
                      logits = model(x)
                      # [b]
                      pred = logits.argmax(dim=1)
                      # [b] vs [b]
                      total_correct += torch.eq(pred, label).float().sum().item()
                      total_num += x.size(0)
                  acc = total_correct / total_num
                  print('test:', epoch, acc)
      
      if __name__ == '__main__':
          main()
      

      ResNet和LeNet相比,准确率提升的很快,但是由于层数增加,不可避免的会导致运行时间增加,如果没有GPU,运行一个epoch大概要15分钟。读者同样可以在此基础上修改网络结构,运用一些tricks,比方说一开始就对图片做一个Normalize等

      1 Reply Last reply Reply Quote 3
      • First post
        Last post