【记录】einops工具
-
地址:https://github.com/arogozhnikov/einops
安装:pip install einops
einops库通过灵活而强大的张量操作符为你提供易读并可靠的代码。
支持 numpy、pytorch、tensorflow 等等。实现缩放点积Attention
不使用einops代码量
class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) self.softmax = nn.Softmax(dim=2) def forward(self, q, k, v, mask=None): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature if mask is not None: attn = attn.masked_fill(mask, -np.inf) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn class MultiHeadAttentionOld(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask) output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) return output, attn
使用einops后的代码量(可以发现代码行数变短好多。主要是在维度交换,拆分的那部分!)
class MultiHeadAttentionNew(nn.Module): def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(p=dropout) self.layer_norm = nn.LayerNorm(d_model) def forward(self, q, k, v, mask=None): residual = q q = rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head) k = rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head) v = rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head) attn = torch.einsum('hblk,hbtk->hblt', [q, k]) / np.sqrt(q.shape[-1]) if mask is not None: attn = attn.masked_fill(mask[None], -np.inf) attn = torch.softmax(attn, dim=3) output = torch.einsum('hblt,hbtv->hblv', [attn, v]) output = rearrange(output, 'head b l v -> b l (head v)') output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) return output, attn
注:
使用einops库,一方面可以方便进行维度拆分,维度交换等操作,另一方面最主要它有更强的可读性,这样我们可以更好的理解里面的维度代表的意义!