Salute!Word2Vec的PyTorch实现
-
源码来自于nlp-tutorial,我在其基础上进行了修改
''' code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor 6/11/2020 ''' import torch import numpy as np import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import torch.utils.data as Data dtype = torch.FloatTensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
文本预处理
sentences = ["jack like dog", "jack like cat", "jack like animal", "dog cat animal", "banana apple cat dog like", "dog fish milk like", "dog cat animal like", "jack like apple", "apple like", "jack like banana", "apple banana jack movie book music like", "cat dog hate", "cat dog like"] word_sequence = " ".join(sentences).split() # ['jack', 'like', 'dog', 'jack', 'like', 'cat', 'animal',...] vocab = list(set(word_sequence)) # build words vocabulary word2idx = {w: i for i, w in enumerate(vocab)} # {'jack':0, 'like':1,...}
模型相关参数
# Word2Vec Parameters batch_size = 8 embedding_size = 2 # 2 dim vector represent one word C = 2 # window size voc_size = len(vocab)
数据预处理
# 1. skip_grams = [] for idx in range(C, len(word_sequence) - C): center = word2idx[word_sequence[idx]] # center word context_idx = list(range(idx - C, idx)) + list(range(idx + 1, idx + C + 1)) # context word idx context = [word2idx[word_sequence[i]] for i in context_idx] for w in context: skip_grams.append([center, w]) # 2. def make_data(skip_grams): input_data = [] output_data = [] for i in range(len(skip_grams)): input_data.append(np.eye(voc_size)[skip_grams[i][0]]) output_data.append(skip_grams[i][1]) return input_data, output_data # 3. input_data, output_data = make_data(skip_grams) input_data, output_data = torch.Tensor(input_data), torch.LongTensor(output_data) dataset = Data.TensorDataset(input_data, output_data) loader = Data.DataLoader(dataset, batch_size, True)
假设所有文本分词,转为索引之后的list如下图所示
根据论文所述,我这里设定window size=2,即每个中心词左右各取2个词作为背景词,那么对于上面的list,窗口每次滑动,选定的中心词和背景词如下图所示
那么skip_grams变量里存的就是中心词和背景词一一配对后的list,例如中心词2,有背景词0,1,0,1,一一配对以后就会产生[2,0],[2,1],[2,0],[2,1]。skip_grams如下图所示
由于Word2Vec的输入是one-hot表示,所以我们先构建一个对角全1的矩阵,利用
np.eye(rows)
方法,其中的参数rows表示全1矩阵的行数,对于这个问题来说,语料库中总共有多少个单词,就有多少行然后根据skip_grams每行第一列的值,取出相应全1矩阵的行。将这些取出的行,append到一个list中去,最终的这个list就是所有的样本X。标签不需要one-hot表示,只需要类别值,所以只用把skip_grams中每行的第二列取出来存起来即可
最后第三步就是构建dataset,然后定义DataLoader
构建模型
# Model class Word2Vec(nn.Module): def __init__(self): super(Word2Vec, self).__init__() # W and V is not Traspose relationship self.W = nn.Parameter(torch.randn(voc_size, embedding_size).type(dtype)) self.V = nn.Parameter(torch.randn(embedding_size, voc_size).type(dtype)) def forward(self, X): # X : [batch_size, voc_size] one-hot # torch.mm only for 2 dim matrix, but torch.matmul can use to any dim hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size] output_layer = torch.matmul(hidden_layer, self.V) # output_layer : [batch_size, voc_size] return output_layer model = Word2Vec().to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3)
训练
# Training for epoch in range(2000): for i, (batch_x, batch_y) in enumerate(loader): batch_x = batch_x.to(device) batch_y = batch_y.to(device) pred = model(batch_x) loss = criterion(pred, batch_y) if (epoch + 1) % 1000 == 0: print(epoch + 1, i, loss.item()) optimizer.zero_grad() loss.backward() optimizer.step()
由于我这里每个词是用的2维的向量去表示,所以可以将每个词在平面直角坐标系中标记出来,看看各个词之间的距离
for i, label in enumerate(vocab): W, WT = model.parameters() x,y = float(W[i][0]), float(W[i][1]) plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show()
完整代码如下:
''' code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor 6/11/2020 ''' import torch import numpy as np import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import torch.utils.data as Data dtype = torch.FloatTensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") sentences = ["jack like dog", "jack like cat", "jack like animal", "dog cat animal", "banana apple cat dog like", "dog fish milk like", "dog cat animal like", "jack like apple", "apple like", "jack like banana", "apple banana jack movie book music like", "cat dog hate", "cat dog like"] word_sequence = " ".join(sentences).split() # ['jack', 'like', 'dog', 'jack', 'like', 'cat', 'animal',...] vocab = list(set(word_sequence)) # build words vocabulary word2idx = {w: i for i, w in enumerate(vocab)} # {'jack':0, 'like':1,...} # Word2Vec Parameters batch_size = 8 embedding_size = 2 # 2 dim vector represent one word C = 2 # window size voc_size = len(vocab) skip_grams = [] for idx in range(C, len(word_sequence) - C): center = word2idx[word_sequence[idx]] # center word context_idx = list(range(idx - C, idx)) + list(range(idx + 1, idx + C + 1)) # context word idx context = [word2idx[word_sequence[i]] for i in context_idx] for w in context: skip_grams.append([center, w]) def make_data(skip_grams): input_data = [] output_data = [] for i in range(len(skip_grams)): input_data.append(np.eye(voc_size)[skip_grams[i][0]]) output_data.append(skip_grams[i][1]) return input_data, output_data input_data, output_data = make_data(skip_grams) input_data, output_data = torch.Tensor(input_data), torch.LongTensor(output_data) dataset = Data.TensorDataset(input_data, output_data) loader = Data.DataLoader(dataset, batch_size, True) # Model class Word2Vec(nn.Module): def __init__(self): super(Word2Vec, self).__init__() # W and V is not Traspose relationship self.W = nn.Parameter(torch.randn(voc_size, embedding_size).type(dtype)) self.V = nn.Parameter(torch.randn(embedding_size, voc_size).type(dtype)) def forward(self, X): # X : [batch_size, voc_size] one-hot # torch.mm only for 2 dim matrix, but torch.matmul can use to any dim hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size] output_layer = torch.matmul(hidden_layer, self.V) # output_layer : [batch_size, voc_size] return output_layer model = Word2Vec().to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) # Training for epoch in range(2000): for i, (batch_x, batch_y) in enumerate(loader): batch_x = batch_x.to(device) batch_y = batch_y.to(device) pred = model(batch_x) loss = criterion(pred, batch_y) if (epoch + 1) % 1000 == 0: print(epoch + 1, i, loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() for i, label in enumerate(vocab): W, WT = model.parameters() x,y = float(W[i][0]), float(W[i][1]) plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show()